Thursday, November 29, 2012

Wave Packets

Objective
To simulate wave packets and gain insight about them

VPython was used  in order to show first create a Gaussian distribution, then  create a sine function, a superpositioons of various sine functions
To simulate a Gaussian function the following was code used:


from pylab import *
center=5
sigma=1
coeff=1/sqrt(2*pi)*sigma
gauss_list=[]

for x in arange (0,10,0.1):
    gauss=coeff*exp(-(x-center)**2/(2.*sigma**2))
    gauss_list.append(gauss)
     
plot(gauss_list)
show()


----------------------------------------------------
To create a sine function the following was used:


from pylab import *
center=5
sigma=1
coeff=1/sqrt(2*pi)*sigma
omega=1
sine_list=[]

for x in arange (0,10,0.1):
    sine=coeff*sin(omega*x)
    sine_list.append(sine)
     
plot(sine_list)
show()

------------------------------------------

To create a superposition of the sine functions:


from pylab import *
center=5
sigma=1
coeff=1/sqrt(2*pi)*sigma
sine_list=[]
A=5
omega=0.5
supaa = []

for i in range (1,4):
    x=[]
    sine_list=[]
    for t in arange (-2*pi,2*pi,0.01):

        sine=A*sin(i*omega*t)
        sine_list.append(sine)
        x.append(t)
    plot(x,sine_list)
    supaa.append(sine_list)

superposition= zeros(len(sine_list))
for function in supaa:
    #print function                 
    for i in range(len(function)):
        superposition[i] += function[i]
        #print superposition
plot(x,superposition)
show()

-------------------------------------------------------
For a Gaussian we have:

from pylab import *  #Need this for plotting functions
center = 3  #Define the center of the guassian
sigma = 1.0   #Set the standard deviation to 1
coeff = 1 / ((sqrt(2* pi))*sigma)  #This the normalization coefficient

#Define Constants
w = 1   #Set the frequency coefficient
gauss_list=[]
A=gauss_list
Fourier_Series = []  #Initialize the list of sine functions
#Calculate the harmonics of the sine functions
for x in arange(1,50):
    gauss=coeff*exp(-(x-center)**2/(2.*sigma**2))
    gauss_list.append(gauss)
    
for i in range(1,50):
    x = [] #This will let us plot the value from -pi to pi
    sine_function = [] #This contains the sine function

    for t in arange(-3.14,3.14,0.01):  #Loop from -3.14 to 3.14 by 0.1
        sine_f=gauss_list[i-1]*sin(i*w*t)
        sine_function.append(sine_f)  #Add the calculated value to the list of values
        x.append(t)
    Fourier_Series.append(sine_function)

superposition = zeros(len(sine_function)) #set as zeros of length equal to the sine

for function in Fourier_Series:
    for i in range(len(function)):
        superposition[i]+= function[i]

plot(x,superposition)

show()


Questions:Using the integral in \psi(x)=\int_{0}^{\infty}B(k) \:{\rm cos}\: kx \: dk, determine the wave function \psi \left( {x} \right) for a function B\left( k \right) given by 
  B\left( k \right) = \left\{ {\begin{array}{*{20}c}     0 & {k < 0}  \\     {1/k_0 {\rm{,}}} & {0 \le k \le k_0 }  \\     {0,} & {k > k_0 }  \\  \end{array}} \right.   This represents an equal combination of all wave numbers between 0 and k_0. Thus \psi \left( x \right) represents a particle with average wave number k_0 /2, with a total spread or uncertainty in wave number of k_0. We will call this spread the width w_{\rm k} of B\left( k \right), so w_{\rm k} = k_0.

a. Graph B\left( k \right) versus k for the case k_0 = 2\pi /L, where L is a length.

This is a straight line with a height of 2pi/L


b. Graph \psi \left( {x} \right) versus k for the case k_0 = 2\pi /L, where L is a length.


c. Locate the two points closest to this maximum (one on each side of it) where \psi \left( x \right) = 0, and define the distance along the x-axis between these two points as w_{\rm x}, the width of \psi \left( x \right). What is the value of w_{\rm x} if k_0 = 2\pi /L?
This is 1.00 L

d.Repeat part C for the case k_0 = \pi /L.


e. Repeat part D for the case k_0 = \pi /L.

f. The momentum p is equal to hk/2\pi, so the width of B in momentum is w_{\rm p} = hw_k /2\pi. Calculate the product w_{\rm p} w_{\rm x} for the case k_0 = 2\pi /L. 
This is h
g. Calculate the product w_{\rm p} w_{\rm x} for the case k_0 = \pi /L.
This is also h.
h. Discuss your results in light of the Heisenberg uncertainty principle.
The packets follow the uncertainty principle. As we have greater values of k(a wider range of k) which relate the uncertainty in the momentun increases. therefore the positions should be more precise. 
This is seen from using various harmonics in the function and you see a large amplitude in the center that quickyly dies off as you leave the center.

No comments:

Post a Comment